# Behavior Based Integration of Composite Business Processes.

Georg Grossmann, Yikai Ren, Michael Schrefl, Markus Stumptner

University of South Australia

Advanced Computing Research Centre

{cisgg|reny|cismis|mst}@cs.unisa.edu.au



### **Overview**

- Project overview
- Type of business process relations
- Composite business process
- Semantic relationships and their integration in composite business processes
- Future work



### **Project overview**

- Behavior based integration of business processes
- Graphical notation
- Diagram notation
  - UML activity diagram:

accepted standard in softw. engineering

- UML state machine diagram:
  only one object of a class
- Petri net based:
  - \* activities do not consume time
  - \* used in research for verification





- Integration framework
- Based on semantic relationship and integration options
- Meta model architecture























### **Example**





# **Business process relations**

#### • Generalization:

There exists a business process which combines the behavior of two input business processes as shown in the car dealer/insurance example.

#### • Association:

A simple connection between two business processes, e.g., sending a message from one business process to another. Input business processes stay autonomous.

#### • Composition:

Like an association but more restrictive. One business process consists of several other business processes.



- Simplified subset of the standard
- Enhance Petri-net semantics

- States:
  - State between activities
  - Event-based
  - Interrupt business process
- Links:
  - Composition on the same layer



- Simplified subset of the standard
- Enhance Petri-net semantics

- States:
  - State between activities
  - Event-based
  - Interrupt business process
- Links:
  - Composition on the same layer





- Simplified subset of the standard
- Enhance Petri-net semantics

- States:
  - State between activities
  - Event-based
  - Interrupt business process
- Links:
  - Composition on the same layer





- Simplified subset of the standard
- Enhance Petri-net semantics

- States:
  - State between activities
  - Event-based
  - Interrupt business process
- Links:
  - Composition on the same layer





- Simplified subset of the standard
- Enhance Petri-net semantics

- States:
  - State between activities
  - Event-based
  - Interrupt business process
- Links:
  - Composition on the same layer





- Simplified subset of the standard
- Enhance Petri-net semantics

- States:
  - State between activities
  - Event-based
  - Interrupt business process
- Links:
  - Composition on the same layer





- Simplified subset of the standard
- Enhance Petri-net semantics

#### Extensions:

- States:
  - State between activities
  - Event-based
  - Interrupt business process
- Links:
  - Composition on the same layer

#### **CANNOT LEAVE ACTIVITY!**





- Simplified subset of the standard
- Enhance Petri-net semantics

#### Extensions:

- States:
  - State between activities
  - Event-based
  - Interrupt business process
- Links:
  - Composition on the same layer



**TWO TOKENS ARE NEEDED!** 



- Simplified subset of the standard
- Enhance Petri-net semantics

#### Extensions:

- States:
  - State between activities
  - Event-based
  - Interrupt business process
- Links:
  - Composition on the same layer



"A link is an individual connection among two or more objects and may be used for navigation and sending messages."



- Simplified subset of the standard
- Enhance Petri-net semantics

#### Extensions:

- States:
  - State between activities
  - Event-based
  - Interrupt business process
- Links:
  - Composition on the same layer



COMPOSITION IS ONLY SUPPORTED ON DIFFERENT LAYERS!



# **Composite business process**

#### • Example: Computer retailer

A computer retailer buys PC components at the cheapest vendors, assembles them together and sells the complete PCs. He also offers a support for hardware and software problems.

#### • Life cycle:

#### - Construction:

Create the composite object (computer).

#### - Coordination:

Coordination of component and composite behavior during the lifetime of the composite object.

#### - Destruction:

Dismantle the components from the composite object. Destroy separate objects afterwards.



#### **Construction - overview**

computer retailer

motherboard manufacture



### **Construction -** *component commit/history*





### **Construction -** *component commit/history*





# **Construction phase - "Execute if available"**





# **Construction - "Cancel if unsuccessful"**





### **Construction - component commit/history**





### **Construction - ordering**





#### **Coordination between activities**





### **Coordination between state and activities**





### **Coordination between activity and states**





### **Coordination between states**





### **Destruction**





### **Destruction**





### **Destruction**





# Conclusion

- Integration framework based on semantic relationships and integration options
- Extension of UML-AD

#### Future Work:

- Implementation in a meta modeling tool
- Verification
- Application of results to Web Services

